The Pessimistic Limits of Margin-based Losses in Semi-supervised Learning
نویسندگان
چکیده
We show that for linear classifiers defined by convex marginbased surrogate losses that are monotonically decreasing, it is impossible to construct any semi-supervised approach that is able to guarantee an improvement over the supervised classifier measured by this surrogate loss. For non-monotonically decreasing loss functions, we demonstrate safe improvements are possible.
منابع مشابه
Optimal Binary Classifier Aggregation for General Losses
We address the problem of aggregating an ensemble of predictors with known loss bounds in a semi-supervised binary classification setting, to minimize prediction loss incurred on the unlabeled data. We find the minimax optimal predictions for a very general class of loss functions including all convex and many non-convex losses, extending a recent analysis of the problem for misclassification e...
متن کاملMinimax Binary Classifier Aggregation with General Losses
We address the problem of aggregating an ensemble of predictors with known loss bounds in a semi-supervised binary classification setting, to minimize prediction loss incurred on the unlabeled data. We find the minimax optimal predictions for a very general class of loss functions including all convex and many non-convex losses, extending a recent analysis of the problem for misclassification e...
متن کاملSemi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk
This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...
متن کاملWised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge
The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...
متن کاملWised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge
The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1612.08875 شماره
صفحات -
تاریخ انتشار 2016